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Introduction 
Bloci provides consultancy and implementation for Blockchain Solutions. It has set up the 

BlociCarbon marketplace to match UK farmers that need to sell carbon credits, with companies that 

need to buy carbon credits. 

Carbon Credits 

Whatever a company does leaves a Carbon Footprint. This can be Offset by purchasing Carbon 

Credits to become carbon neutral. Bloci sells carbon offsetting credits from reputable and traceable 

UK organisations which can be independently verified via the Blockchain. 

Buying from Bloci encourages UK farmers to become Carbon Positive and selling their carbon credits 

enables others to be carbon neutral. 

Carbon credit self-assessment process 

A carbon credit self-assessment process is currently in place for UK farmers to report to UK 

Government. The Government then administers carbon credits, in return for proven additional 

farming activity that results in increased carbon sequestration. Additional carbon sequestration 

activities must be above and beyond the usual operating activity of a given farm. In order to achieve 

this, a farmer would usually have to invest time and money in a piece of land and may also lose 

growing or grazing land. 

There are three main self-assessment products on the market, that are currently used by 

approximately sixteen thousand farms across the UK. These are the Farm Carbon Toolkit, Agrecalc 

and The Cool Farm Tool. All of these kits provide a complete business toolkit for assessing carbon 

production of the entire farm business and are recognised by the National Farmers Union. The 

information on a self-assessment is submitted by farmers using the Basic Farm Payment System. 

Larger farms have existing bilateral relationships with large carbon credit purchasers, but many 

smaller farms or landowners don’t have this offtake opportunity. 

The Challenge of Climate Change 

Climate change is a global challenge that requires a collective effort from all countries to mitigate its 

impact. The UK government has set a target to achieve net-zero carbon emissions by 2050. 

Achieving this target requires collective action from various sectors, including agriculture. 

Agriculture is a significant contributor to greenhouse gas emissions, accounting for approximately 

10% of the UK’s total emissions. However, agriculture can also be part of the solution to mitigating 

climate change by sequestering carbon in soils. Soil organic carbon (SOC) is an essential component 

of soil health and plays a crucial role in carbon sequestration. Accurate and reliable data on SOC and 

its spatial distribution can help farmers make informed decisions on soil management practices that 

can increase carbon sequestration and reduce carbon emissions. 

This case study explores how combining in-situ SOC data and multispectral satellite imagery 

powered by modern machine learning techniques can provide farmers with important information 

on carbon topsoil storage and CO2 sequestration, which can help the UK meet its climate change 

target. 



Background 
Soil organic carbon (SOC) is the carbon stored in soil through the decomposition of organic matter. 

SOC is a critical component of soil health and plays a crucial role in carbon sequestration. Carbon 

sequestration is the process of capturing and storing carbon from the atmosphere in various carbon 

sinks, including soil, forests, and oceans. Carbon sequestration is essential in mitigating the impact of 

climate change by reducing the concentration of carbon dioxide (CO2) in the atmosphere. 

Agriculture accounts for approximately 10% of the UK’s total greenhouse gas emissions. However, 

agriculture can also be part of the solution to mitigating climate change by sequestering carbon in 

soils. Soil management practices that increase carbon sequestration can also improve soil health, 

water retention, and nutrient cycling. 

Accurate and reliable data on SOC and its spatial distribution is essential in making informed 

decisions on soil management practices that can increase carbon sequestration and reduce carbon 

emissions. Traditional methods of measuring SOC are time-consuming, expensive, and labour-

intensive. 

Work completed by the Farm Carbon Toolkit has demonstrated that every hectare of land that raises 

its soil organic matter levels by just 0.1% (e.g. 4.2% to 4.3%) can sequester approximately 8.9 tonnes 

of CO2 per year (at 1.4 g/cm3 bulk density). This is an extraordinary figure; in practice that is not 

only possible but being exceeded by farmers and growers building healthy soils. 

Current manual process for data collection 

The complete business toolkits include manual soil sampling requirements (see figure 1), whereby a 

farmer must collect ~2-3 soil samples on land that it has designated for additional carbon 

sequestration activities. Guidance is provided about where to take the sample but this is not 

validated and specific geolocations are not provided. These samples are sent away and analysed in a 

laboratory. Every 12 months, a farmer is required to work through the toolkit again to see if it has 

gained or lost carbon. 

 

 

Bloci would like to be able to improve the current data collection method for carbon content in soils, 

such that data collection can be undertaken more frequently than once a year and potentially over 



wider sample areas. BlociCarbon aims to acquire more accurate soil carbon content figures, cheaply 

so that data can be gathered more widely. This would have the benefits of providing higher fidelity 

data on the carbon sequestration process and improve the BlociCarbon platform. In turn, this would: 

• Enable farmers to optimise the self-assessment process 

• Encouraging smaller farmers to more easily undertake carbon sequestration assessments 

and find offtake opportunities 

• Provide immutable records and validation of carbon credit origins for buyers of carbon 

credits 

Bloci was presented with a number of options which could be split in two groups: ‘in the ground 

measurement’ and ‘in the sky measurement’. It was felt that due to the inherent scalability, satellite-

based analysis was the preferred option incorporating a machine learning element. 

In recent years, remote sensing techniques, including multispectral satellite imagery, have shown 

potential in mapping SOC at a large scale. Combining in-situ SOC data with multispectral satellite 

imagery can provide farmers with accurate and reliable information on SOC and its spatial 

distribution, enabling them to make informed decisions on soil management practices. 

 

Objectives 
The primary objective of this case study is to explore how combining in-situ SOC data and 

multispectral satellite imagery powered by modern machine learning techniques can 

provide farmers with important information on carbon topsoil storage and CO2 sequestration, which 

can help the UK meet its climate change target. The case study aims to: 

1. Investigate the accuracy of using multispectral satellite imagery in mapping SOC at a large 

scale. 

2. Explore the potential of modern machine learning techniques in combining in-situ SOC 

data with multispectral satellite imagery to provide accurate and reliable information on SOC 

and its spatial distribution. 

3. Evaluate the usefulness of the information provided by the combined approach in 

informing soil management practices that increase carbon sequestration and reduce carbon 

emissions.  



Methodology 
The case study used a combination of in-situ SOC data and multispectral satellite imagery to map 

SOC in a pilot study area in the UK. The study area covered approximately 10 hectares of mostly 

grazing land in North Wales. In-situ SOC data was collected using a combination of traditional 

laboratory analysis and field-based measurements. The laboratory analysis involved the use of the 

Walkley-Black method to determine the amount of SOC in soil samples. 

Multispectral satellite imagery data was obtained from the European Space Agency’s Sentinel-2 

satellite. The satellite data consisted of 13 spectral bands, covering a wavelength range of 443 to 

2190 nm. The satellite data was processed using a modern machine learning techniques. 

 

The European Space Agency (ESA) operates a fleet of Earth observation satellites, including the 

Sentinel series of satellites, which are designed to provide high-resolution and multispectral images 

of the Earth's surface. Sentinel-2 is one of the satellites in the series that is particularly useful for 

monitoring soil variation. 

Sentinel-2 carries a multispectral instrument that provides 13 spectral bands, covering a wavelength 

range of 443 to 2190 nm. The instrument has a spatial resolution of 10 to 60 meters, depending on 

the spectral band, which enables it to capture detailed images of the Earth's surface. 

 

The multispectral images captured by Sentinel-2 can be processed to extract information on soil 

variation. For example, the Normalized Difference Vegetation Index (NDVI) can be calculated from 

the images, which provides an indication of vegetation cover and biomass. Areas with higher 

vegetation cover and biomass are generally associated with higher levels of organic matter and soil 

carbon, while areas with lower vegetation cover and biomass are associated with lower levels of 

organic matter and soil carbon. 



 

In addition, the multispectral images can be used to identify areas with different soil types, moisture 

levels, and other soil properties. For example, the images can be used to detect areas with high 

levels of clay or sand content. 

 

 

 

The in-situ SOC data and satellite imagery data were combined using a spatial statistical modelling 

approach known as kriging. Kriging is a geostatistical technique that can be used to interpolate data 

between sample points. The kriging approach was used to estimate SOC values at unsampled 

locations based on the relationship between the in-situ SOC data and satellite imagery data. 

The accuracy of the combined approach was evaluated using a cross-validation technique. The cross-

validation involved dividing the data into training and testing datasets, where the training dataset 

was used to train the random forest regression model, and the testing dataset was used to evaluate 

the accuracy of the model’s predictions. 



 

 

Provisional Results 
The early results of the pilot study showed that combining in-situ SOC data and multispectral 

satellite imagery using modern machine learning techniques can provide accurate and reliable 

information on SOC and its spatial distribution. 

The spatial distribution of SOC in the study area was mapped using the kriging approach. The map 

showed that SOC was spatially variable, with higher concentrations of SOC in areas with higher 

vegetation cover and lower concentrations of SOC in areas with lower vegetation cover. The map 

also identified areas with high potential for carbon sequestration, which could inform soil 

management practices aimed at increasing carbon sequestration and reducing carbon emissions. 

The information provided by the combined approach was useful in informing soil management 

practices that increase carbon sequestration and reduce carbon emissions. The information could be 

used to identify areas of the farm that require soil improvement practices, such as the application of 

organic matter, cover crops, and reduced tillage. These practices can increase carbon sequestration 

by increasing the amount of organic matter in the soil, reducing soil erosion, and improving soil 

structure and water retention. 



 

 

Conclusion 
Combining in-situ SOC data and multispectral satellite imagery powered by modern machine 

learning techniques is likely to provide farmers with accurate and reliable information on SOC and its 

spatial distribution. The information can help farmers make informed decisions on soil management 

practices that can increase carbon sequestration and reduce carbon emissions, ultimately 

contributing to the UK’s efforts to meet its climate change target. 

The pilot study will demonstrate the potential of using remote sensing techniques and modern 

machine learning techniques in mapping SOC at a large scale. The approach could be scaled up to 

cover larger areas and integrated with other data sources, such as weather data and crop yield data, 

to provide a more comprehensive understanding of soil health and carbon sequestration potential. 

Further research is needed to evaluate the cost-effectiveness of the combined approach and its 

scalability to cover larger areas. The approach could also benefit from the integration of ground-

based sensors and other data sources to improve the accuracy of the predictions and reduce the 

reliance on in-situ data. 
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